Ensuring high sensor data quality through use of online outlier detection techniques

نویسندگان

  • Yang Zhang
  • Nirvana Meratnia
  • Paul J. M. Havinga
چکیده

Data collected by Wireless Sensor Networks (WSNs) are inherently unreliable. Therefore, to ensure high data quality, secure monitoring, and reliable detection of interesting and critical events, outlier detection mechanisms are needed to be in place. The constraint nature of resources available in WSNs necessities that unlike traditional outlier detection techniques performed off-line, outliers to be identified in an online manner. This means that outliers in distributed streaming data should be detected in (near) real time with a high accuracy while maintaining the resource consumption of the WSN to a minimum. In this paper, we propose outlier detection techniques based on one-class quarter-sphere support vector machine meeting constraints and requirements of WSNs. To reduce the false alarm rate while increasing the detection rate and to enable collaborative outliers detection, we take advantage of spatial and temporal correlations that exist between sensor data. Experiments with both synthetic and real data show that our distributed and online outlier detection techniques achieve better detection accuracy and lower false alarm compared to an earlier distributed, batch outlier detection technique designed for WSNs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distributed online outlier detection in wireless sensor networks using ellipsoidal support vector machine

Low quality sensor data limits WSN capabilities for providing reliable real-time situationawareness. Outlier detection is a solution to ensure the quality of sensor data. An effective and efficient outlier detection technique for WSNs not only identifies outliers in a distributed and online manner with high detection accuracy and low false alarm, but also satisfies WSN constraints in terms of c...

متن کامل

Outlier Detection in Wireless Sensor Networks Using Distributed Principal Component Analysis

Detecting anomalies is an important challenge for intrusion detection and fault diagnosis in wireless sensor networks (WSNs). To address the problem of outlier detection in wireless sensor networks, in this paper we present a PCA-based centralized approach and a DPCA-based distributed energy-efficient approach for detecting outliers in sensed data in a WSN. The outliers in sensed data can be ca...

متن کامل

Observing the unobservable : distributed online outlier detection in wireless sensor networks

The generation of wireless sensor networks (WSNs) makes human beings observe and reason about the physical environment better, easier, and faster. The wireless sensor nodes equipped with sensing, processing, wireless communication and actuation capabilities can be densely deployed in a wide geographical area and measure various parameters continuously from the physical world. Compared with trad...

متن کامل

A Practical Approach to Quality Control and Quality Analysis of Depth Data

Quality analysis of a collected depth dataset is important in order to find the statistic accuracy and variance of the depth data. Any systematic errors have to be identified and if possible minimised. It is also important to establish if the data fulfils the accuracy standard stated in the survey specification. The accuracy of collected depth data depends on several parameters such as the accu...

متن کامل

Detecting Suspicious Card Transactions in unlabeled data of bank Using Outlier Detection Techniqes

With the advancement of technology, the use of ATM and credit cards are increased. Cyber fraud and theft are the kinds of threat which result in using these Technologies. It is therefore inevitable to use fraud detection algorithms to prevent fraudulent use of bank cards. Credit card fraud can be thought of as a form of identity theft that consists of an unauthorized access to another person's ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IJSNet

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2010